Fiber Reinforced Polymer Upgrades for Large Pipelines

Anna Pridmore, PhD
Vice President - Pipeline Solutions
Structural Technologies
Agenda

- Inspection Methods evolution
- Repair Options analysis
- Carbon Fiber technical overview
- Project overview: 144-inch PCCP
- Project overview: 36 & 42-inch steel pipeline
- Advancements in surface preparation
- Overcoming operational challenges
- Conclusions
Solutions that integrate products, engineering, and construction

State of the Art Products
Engineering Support Services

Specialty Contracting
- **Products & Systems**
 - Strengthening
 - Force Protection
 - Pipe Repair & Upgrade
 - Corrosion Control
 - Moisture Control
 - Concrete Restoration
 - Equipment Foundations
 - Post Tensioning

- **Engineering Support**
 - Investigative Condition Assessment
 - Engineering
 - Product Customization
 - Design – Assist
 - Specialty Full Design

State of the Art Products
Engineered Solutions
Pre-Stressed Concrete Cylinder Pipe (PCCP) overview

Key points:

- Certain types of pre-stressing wires susceptible to failure
- Installed in 16-24 foot sections, often referred to as “spools”, which lends well to segmental or targeted repairs
- Current inspection technology and owner behavior, typically repairing suspect segments
- Other concrete - cracking due to surge pressure damage, corroded reinforcement steel, age or soil settlement factors
- Metallic - corrosion of pipeline due to soil chemistry, age or other factors causing section loss (wall thinning) and can lead to leaks
- Polymer based - cracking due to surge pressure damage, age or soil settlement issues
Pipeline Inspection Methods

1. Visual & sounding - Determines severely deteriorated pipe areas
2. In-line acoustics - Determines leaks in the pipe
3. Electromagnetics - Determines pre-stressing wire breaks in PCCP
4. Impact echo - Determines concrete integrity or metallic wall thickness
5. Magnetic flux leakage - Determines metallic pipe wall loss
6. Correlators - Determines leaks in the pipe and average pipe wall thickness
Repair Options Analysis

What are the alternatives?

1. Dig & replace - new pipe
2. Steel slip-lining
3. Protective coatings
4. Structural lining - CFRP
5. External post-tensioning
Carbon Fiber Technical Overview

FRP = Fiber Reinforced Polymer

Carbon Fiber provides structural strength.
Epoxy resin provides durability.
Carbon Fiber Technical Overview

- 36-inches and above diameter for buried pipe, no size limitations for exposed piping
- Fluid type - water and waste water
- Internal pressures - up to 400psi
- External loads - no limit
- Host pipe materials - most any material including PCCP, reinforced concrete, steel, cast iron, ductile iron, and polymer based piping systems
- Temperature limit - 130F
- Schedule - need minimum 4 day construction window
Carbon Fiber Technical Overview

- Durability - ICC compliance
- Testing requirements
 - Resin system
 - Wet lay-up method
 - Minimum field applications
Carbon Fiber Technical Overview

ICC AC-125 Durability Matrix

<table>
<thead>
<tr>
<th>ENVIRONMENTAL DURABILITY TEST</th>
<th>RELEVANT SPECIFICATIONS</th>
<th>TEST CONDITIONS</th>
<th>TEST DURATION</th>
<th>MINIMUM PERCENT RETENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water resistance</td>
<td>ASTM D 2247, ASTM E 104</td>
<td>100 percent, 100 ± 2°F</td>
<td>1,000, 3,000 and 10,000 hours</td>
<td>90</td>
</tr>
<tr>
<td>Saltwater resistance</td>
<td>ASTM D 1141, ASTM C 581</td>
<td>Immersion at 73 ± 2°F</td>
<td>1,000, 3,000 and 10,000 hours</td>
<td>85</td>
</tr>
<tr>
<td>Alkali resistance</td>
<td>ASTM C 581</td>
<td>Immersion in Ca (CO₃) at pH = 9.5 & 73 ± 3°F</td>
<td>1,000 and 3,000 hours</td>
<td></td>
</tr>
<tr>
<td>Dry heat resistance</td>
<td>ASTM D 3045</td>
<td>140 ± 5°F</td>
<td>1,000 and 3,000 hours</td>
<td></td>
</tr>
</tbody>
</table>
Carbon Fiber Technical Overview

Design Considerations Overview

- Internal working pressure
- Internal working-plus-transient pressure
- Weight of pipe and fluid
- Earth load above the pipe
- Live loads at the ground surface
- External pressure due to groundwater above the pipe
- Negative pressure inside the pipe

What is the desired service life?
Carbon Fiber Technical Overview

End connection detailing

- **Existing Pipe Bell End**
- **Existing Pipe Spigot End**
- **Remove existing concrete and replace with thickened epoxy. Provide smooth surface to receive FRP**
- **Remove concrete using straight circumferential cut and fill corner with thickened epoxy. Avoid damage to steel cylinder**
- **Stainless steel expansion ring and 1/4" thick rubber strip expanded against pipe wall to achieve 100 PSI interface pressure**
- **Longitudinal glass FRP**
- **Circumferential carbon FRP**
- **Epoxy mortar**
- **Thickened V-wrap 700 epoxy top coat**
Project Overview: 36 & 42-inch steel pipeline

- Nuclear Facility in United States
- Circulating Water System consists of 36 & 42-inch carbon steel pipelines
- Thinning wall sections and limited thru-wall leaks were detected during inspection
Project Overview: 36 & 42-inch steel pipeline

Project Scope:
- Carbon fiber reinforced polymer (CFRP) composite lining of 255 continuous lineal feet of 36 & 42-inch carbon steel pipe during 2013 outage

Unique Project Challenges:
- Extremely poor condition of substrate
- Sequencing operations activity in small diameter pipeline
- Coordination of weld repairs during operations
- Changes in elevation and slope conditions within scope area
Project Overview: 36 & 42-inch steel pipeline
Advances in Surface Preparation

Before

After

36 & 42-inch steel pipeline project
Project Challenges: 36 & 42-inch steel pipeline

- Project sequencing during installation due to limited access within 36-inch pipe

Primer coat installation

Glass Fiber installation

Carbon Fiber Installation

Final CFRP layer & topcoat
Background - Quality Control Program

Multiple QA/QC Personnel
- 3rd Party inspector
- Full time Quality Assurance Manager
- Multiple Owner Representatives

Documentation for each stage of implementation
- Material verification
- Surface preparation
- Mixing and saturation
- CFRP liner installation
- End details and special detailing
- Top coat
- Final cure
FRP Composite Systems - Next Generation

Installation Overview - Reinforcing Steel
StrongPIPE Hybrid FRP System

Description

Legend
1. 1st Glass FRP Layer (longitudinal)
2. High Str. Steel Wire
3. Polymer Matrix
4. 2nd Glass FRP Layer (longitudinal)
5. Flexible Topcoat
Thank you!

Questions?

Anna Pridmore, PhD
VP- Pipeline Solutions
Structural Technologies, LLC
apridmore@structural.net
714-869-8824