The energetic implications of curtailing versus storing solar- and wind-generated electricity†

Charles J. Barnhart,*a Michael Dale,a Adam R. Brandtb and Sally M. Bensonab

We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe > 80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery’s embodied energy requirement, an increase of cycle life to 10 000–18 000 (2–20 times present values) is required for pairing with wind (assuming liberal round-trip efficiency [90%] and liberal depth-of-discharge [80%] values). Reducing embodied energy costs, increasing efficiency and increasing depth of discharge will also further improve the energetic performance of batteries. While this paper focuses on only one benefit of energy storage, the value of not curtailing electricity generation during periods of excess production, similar analyses could be used to draw conclusions about other benefits as well.

1 Introduction

The world needs affordable, accessible, sustainable and low-carbon energy resources.1–3 Of the renewable resources, solar PV and wind turbines have the highest technical potential to satisfy this need, but these technologies generate electricity from variable, weather-dependent resources.4–7 Fig. 1 provides a compelling visualization of 30 days of superimposed power demand time series data (red) wind energy generation data (blue) and solar insolation data (yellow). Supply correlates poorly with demand.

To accommodate variable sources of electricity, grid-operators will deploy load-balancing techniques that increase grid flexibility. These techniques include improved forecasting of renewable generation, building excess generation capacity and transmission, natural gas firming, electrical energy storage and demand-side management.8–12

In lieu of grid flexibility, variable resources are curtailed during periods of oversupply or of strong market disincentives.13,14 Consequently, electricity is squandered, capacity

Broader context

Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it increases the lifetime cost of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. In this study we employ net energy analysis to compare the energetic cost of wind and solar generation curtailed at various rates to the energetic cost of those generators paired with storage. We find that energetic cost depends on the generation technology, the storage technology, and the rate of curtailment. In some cases it is energetically favorable to store excess electricity. In other cases, it is favorable to curtail these resources. Our goal is to stimulate the identification of new and optimum uses for excess renewable energy and research and development directions for technologies providing grid flexibility.

1 Global Climate and Energy Project, Stanford University, Stanford, CA, USA. E-mail: charles.barnhart@stanford.edu; Fax: +1 650 725 9190; Tel: +1 650 736 8627
2 Dept. of Energy Resources Engineering, Stanford University, Stanford, CA 94305, USA
† Electronic supplementary information (ESI) available: EROI and ESOI data, expanded derivation of system EROI mathematical framework. See DOI: 10.1039/c3ee41973h

Cite this: DOI: 10.1039/c3ee41973h
To be clear, we focus solely on comparing the energy efficiency of storing electricity versus curtailing electrical generation. EES has significant value not quantified or analyzed in this study, including electricity market economics, insuring reliable power supplies to critical infrastructure, ancillary benefits to power grid operation, and application in disaster relief and war zone scenarios.

Our analysis begins with a theoretical framework for quantifying how storage affects net energy ratios. This framework accommodates any type of generation or storage technology. Using Life Cycle Assessment (LCA) for generation and storage technologies, we calculate which storage and generation technologies result in a net energy gain over curtailment. We provide a straightforward decision metric for choosing storage or curtailing. Finally, we discuss these results and make recommendations for storage use scenarios, consider alternative options to curtailment, and identify the most effective research and development directions for improving the energetic performance of battery technologies.

2 A theoretical framework for system-wide EROI

The ESI† includes a thorough derivation of the framework for calculating the EROI of renewable generation paired with storage. In this section we present the necessary terms and equations required to calculate this paper’s results.

Fig. 1 Wind-power generation (blue), insolation (gold), and power demand (red) time series data provide a compelling visualization of renewable energy’s intermittent correlation with demand. Thirty days of data collected in April 2010 are superimposed and normalized to their maximum values. Average values are in color-highlighted black lines. Data obtained from Bonneville Power Administration. Plot concept motivated by ref. 8.

To quantify how much energy is delivered from storage to society, we compare the total electrical energy output to the total electrical energy input over the system lifetime. We find the energy efficiency of energy storage per unit of storage capacity as $\text{EROI} = \frac{\text{electrical energy output}}{\text{electrical energy input}}$.

The system lifetime is the number of charge cycles, L, where $L = \frac{\text{electrical energy output}}{\text{discharge cycles}}$. We employ these equations required to calculate this paper’s results. In this section we present the necessary terms and equations required to calculate this paper’s results.

In this paper, we compare the energetic costs of electrical energy storage (EES) to the energetic costs of curtailing. We ask whether or not storage provides societal net-energy gains over curtailment.

We chose to analyze EES because it currently holds academic, governmental and corporate focus, and benefits from trade organizations promoting its development and commercialization. Policymakers at state and national levels have drafted legislation that considers mandating the implementation of electrical energy storage. For example, California Assembly Bill no. 2514 requires the California Public Utility Commission to “determine appropriate targets for each load-serving entity to procure viable EES systems by October 2013, and if determined to be appropriate, to be achieved by each load-serving entity by December 2015.”

In this study we compute all energy calculations in terms of electrical energy. We expand ϵ_s by considering the energy inputs and outputs of a storage device. The input is the cradle-to-gate embodied energy, ϵ_c [kWh embodied electrical energy per kWh storage capacity]. The total electrical energy output from the storage device over its lifetime, per unit storage capacity, is $\lambda \eta D$, where λ is the number of charge-discharge cycles or its cycle life [cycles], η is the round-trip AC-AC efficiency, and D...
is the depth of discharge [fractional] at which \(\lambda \) cycles are achieved. As such,

\[
\epsilon_s = \frac{\epsilon_c}{1 + \lambda D} \left[\text{kWh}_\text{e embodied} / \text{kWh}_\text{e capacity} \right].
\]

(1)

Given the energy intensities of a generation and storage technology, \(\epsilon_e \) and \(\epsilon_s \), we now consider the grid-level energy intensity, \(\epsilon_{gr} \), of a simple energy system: a variable renewable resource rendered grid dispatchable by an EES technology. A power grid, on a time-average basis, cannot accommodate a fraction, \(\phi \), of the variable resource’s energy return. This fraction is curtailed or stored. Either choice increases the energy intensity of the electricity output. Curtailment increases the resource energy intensity, \(\epsilon_e \), to \(\epsilon_c \),

\[
\epsilon_c = \epsilon_e \left[\text{kWh}_\text{e embodied} / \text{kWh}_\text{e generated} \right].
\]

(2)

Fig. 2 shows a diagram of the energy inputs and outputs of power grid incorporating EES at fraction \(\phi \). Although the diagram shows one solar PV panel and one storage battery, it represents energy inputs and outputs generalized at societal scale. The output from storage is modulated by the storage efficiency, \(\eta_s \), and the fractional input \(\phi \). As such, the storage energy intensity, \(\epsilon_s \), is multiplied by \(\eta_s \phi \) to maintain a denominator of per unit electrical energy output. Summing the energy inputs, and dividing them by the output energy to the power grid, it is shown in the ESI† that grid energy intensity, \(\epsilon_{gr} \), equals

\[
\epsilon_{gr} = \epsilon_c + \eta_s \phi \left[\text{kWh}_\text{e embodied} / \text{kWh}_\text{e generated} \right].
\]

(3)

2.1 Decreases in EROI at grid scale

We define the EROI of a renewable resource energy acquisition technology as the inverse of \(\epsilon_e \): EROI = \(\frac{1}{\epsilon_e} \). In a previous study, we derived an analog to EROI for storage technologies: Energy Stored on Invested (ESOI). That study defined ESOI as the primary energy inputs per unit of EES capacity. ESOI\(_c\) is the ratio of electrical energy stored over the lifetime of a storage device to the amount of embodied electrical energy required to build the device:

\[
\text{ESOI}_c = \frac{C \eta D}{\epsilon_c} = \frac{\lambda D}{\epsilon_e} \left[\text{kWh}_\text{e capacity} / \text{kWh}_\text{e embodied} \right].
\]

(4)

where \(C \) is the battery capacity [kWh\(_e\)]. Again, by definition ESOI\(_c\) is the inverse of \(\epsilon_e \). Curtailment reduces the system EROI to EROI\(_{curt} \). In terms of EROI and ESOI\(_c\), eqn (3) can be rearranged as

\[
\text{EROI}_{curt} = \frac{1}{1 - \phi - \eta_s \phi} \left[\frac{\text{kWh}_\text{generated}}{\text{kWh}_\text{embodied}} \right].
\]

(5)

The incorporation of storage at some fraction \(\phi \) reduces the system EROI to EROI\(_{grid} \). In terms of EROI and ESOI\(_c\), eqn (3) can be rearranged as

\[
\text{EROI}_{grid} = \frac{1}{1 - \phi - \eta_s \phi} \left[\frac{\text{kWh}_\text{generated}}{\text{kWh}_\text{embodied}} \right].
\]

(6)

In our derivation of EROI\(_{grid} \) we assume that storage operates optimally and that the precise storage capacity required is built. As such, EROI\(_{grid} \) is a theoretical maximum for a given generation and storage technology.

2.2 EROI and ESOI\(_c\) data for technologies

Table 1 lists median EROI values, median ESOI\(_c\) values, and storage technology attributes used in the computation of our results. We acquired EROI data for wind turbine and PV technologies, and ESOI\(_c\) data for storage technologies, by employing a meta-analysis of previous LCA studies (see ESI†). Fig. 3 shows average quantile EROI values for PV solar technologies and wind farm locations. Thin film solar technologies have greater EROI values than wafer technologies (sc-Si and mc-Si). Reported EROI values for wind farms vary from less than 5 to greater than 100. Wind technologies have a much larger median EROI (86 and 89) than solar technologies (8 and 13). This is primarily due to large differences in their embodied energy. A distinct decrease in embodied energy for wafer technologies occurred in

<table>
<thead>
<tr>
<th>Technology</th>
<th>Efficiency</th>
<th>Cycle life</th>
<th>Depth of discharge</th>
<th>Embodied energy</th>
<th>Energy ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>(\eta) (%)</td>
<td>(\lambda) (%)</td>
<td>(D) (%)</td>
<td>(\epsilon_e) [kWh(_e)/kWh(_c)]</td>
<td>ESOI(_c) [kWh(_e)/kWh(_c)]</td>
</tr>
<tr>
<td>Li-ion</td>
<td>90</td>
<td>6000</td>
<td>80</td>
<td>136</td>
<td>32</td>
</tr>
<tr>
<td>NaS</td>
<td>75</td>
<td>4750</td>
<td>80</td>
<td>146</td>
<td>20</td>
</tr>
<tr>
<td>PbA</td>
<td>90</td>
<td>700</td>
<td>80</td>
<td>96</td>
<td>5</td>
</tr>
<tr>
<td>VRB</td>
<td>75</td>
<td>2900</td>
<td>100</td>
<td>208</td>
<td>10</td>
</tr>
<tr>
<td>ZnBr</td>
<td>60</td>
<td>2750</td>
<td>80</td>
<td>151</td>
<td>9</td>
</tr>
<tr>
<td>CAES</td>
<td>70</td>
<td>25000</td>
<td>n/a</td>
<td>22</td>
<td>797</td>
</tr>
<tr>
<td>PHS</td>
<td>85</td>
<td>25000</td>
<td>n/a</td>
<td>30</td>
<td>704</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generation</th>
<th>EROI(_{grid})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer PV</td>
<td>8</td>
</tr>
<tr>
<td>Wind</td>
<td>86</td>
</tr>
</tbody>
</table>

\(a \) Sources: [24], [25], [23], [26], detailed analysis in ESI.
the period 2005–2008, which coincides with the PV industry switching from highly purified (99.99999% pure) electronics-grade silicon, obtained as a waste stream from the microchip manufacturing industry, to production of its own less pure (99.999% pure) solar-grade silicon.

We provide these EROI and ESOI_e ratio data to explore storage and curtailment in the contemporary energy landscape. These ratios vary with different designs within a particular technology set and will change with technological advances. They also depend on operating practices and location.11,27

As recognized in prior work, these ESOI_e data demonstrate a key difference in the net energy performance of battery technologies and large-scale geological storage technologies: batteries have lower ESOI_e ratios by more than two orders of magnitude.23 The values for flow and PbA batteries are particularly low. Over their entire life, these technologies only store 5 to 10 times the energy (electrical equivalents) required to build them.

EROI and ESOI_e ratios are cast in units of electrical energy per electrical energy. To compare the energetic losses associated with curtailment to the energetic requirements of EES the same type of energy needs to be maintained in the theoretical framework. Two commonly used options are primary energy (e.g. higher heating value of coal, oil or gas) or some form of secondary energy (e.g. energy content of electricity). First, we cast ESOI_e in terms of electrical energy because curtailed energy is electrical, not primary energy. Second, for electrochemical storage many processes including material extraction and purification as well as battery manufacture is presently or could be electrified.27 Third, although geologic storage technologies require civil construction operations that rely on primary fuel sources, over 2/3 of the capital energy expenditures could be electrified. Specifically, the energetic cost breakdown for PHS is as follows: reservoir and dam construction (104.8 GJ/MW h); tunneling (86.7); electrical equipment (134.7).28 And for CAES: cavern development (16.2); site and buildings (36.7); electrical equipment (65.9); gas infrastructure (130.5).28 Assuming reservoir construction, dam construction and cavern development require primary energy, hypothetically, about 70% of PHS and 90% of CAES deployment could be electrified.

3 Results

EES increases the energy intensity of renewable resources to \(\epsilon_g \) (eqn (3)). Curtailment increases the energy intensity to \(\epsilon_c \) (eqn (2)). By setting \(\epsilon_g = \epsilon_c \) we establish a decision metric that determines when, from a net energy perspective, a variable electric resource should be stored. As demonstrated in the ESI,† this equality, in terms of EROI and ESOI_e, simplifies to

\[
\frac{ESOI_e}{EROI} = 1 - \phi.
\]

when this equality holds, curtailment and storage yield the same grid scale EROI. Otherwise, from an energy efficiency perspective, one of two conditions exists:

\[
\begin{align*}
ESOI_e / EROI &= \begin{cases}
store & \text{if } 1 - \phi > 0 \\
curtail & \text{if } 1 - \phi < 0
\end{cases}
\end{align*}
\]

This inequality can be rearranged to explore individual variables. For example, to determine what minimum ESOI_e is required to achieve a net energy gain over curtailment the following arrangement is employed,

\[
ESOI_e > (1 - \phi)EROI
\]
Individual variables can be expanded to further explore the effects that technological attributes have on the decision to store or curtail. For example, the minimum cycle life required by electrochemical storage technologies is

$$\lambda > (1 - \phi) \frac{\text{EROI}}{\eta D}.$$ (10)

The decision to install and operate equipment to store or curtail excess electrical energy depends on the energy resource, the storage technology, and the fraction of energy that is to be curtailed or passes through storage. Fig. 4 shows four curtailment or storage values of ϕ that bisect the plot into two regions.

The blue region above and to the left of a ϕ line shows combinations of resource EROI (y-axis) and storage ESOI (x-axis), that would reduce the grid EROI to values below reductions simply due to curtailment, i.e. $\text{EROI}_{\text{grid}} < \text{EROI}_{\text{curt}}$. The green region below and to the right of a ϕ line shows combinations of EROI and ESOI that yield grid EROI values that are better than curtailment EROI values, $\text{EROI}_{\text{grid}} > \text{EROI}_{\text{curt}}$. In this region the use of storage provides a net energy gain over curtailment.

This plot tells a simple story. From a net-energy perspective, electricity generated using solar PV technologies can be stored efficiently using all plotted technologies, while wind power should be stored with more energetically favorable storage options such as PHS and CAES.

Several interesting results emerge from Fig. 5. First, storage technologies with low ESOI values, like PbA and ZnBr, reduce the grid EROI down much more severely than technologies with high ESOI values, like PHS, CAES and Li-Ion. Second, the bottom plot shows that battery technologies paired with wind yield grid EROI values far below EROI values from curtailment alone for reasonable values of ϕ. However these grid EROI values are greater than the average PV EROI value (8).

4 Discussion

Ideally, storage technologies that support generation resources should not diminish energy-return ratios below curtailment energy return ratios for reasonable values of ϕ. This means that geologic storage technologies, not contemporary battery technologies, are much more favorable for storing electricity generated from wind power.

Why do high EROI generation values require high ESOI storage values, and why do low ESOI values accommodate low EROI generation technologies? It is helpful to think of energy intensity as a cost. Generation with low ε_r is energetically inexpensive. Curtailing these resources does not incur as much societal scale energetic cost as using energetically expensive, i.e. low ESOI, storage technologies. Conversely, generation with high ε_r resources is energetically expensive. Curtailing these resources forfeits energy that incurred high energetic costs. These costs, in the case of PV, are greater than the cost of incorporating storage even with low ESOI values. Attempting to salvage energetically cheap power (e.g., wind) using energetically expensive batteries is wasteful from a societal perspective. The renewable transition will be aided by choosing the most energetically efficient ways to get low carbon power.

Curtailment rates will depend on the energy and market balance of specific power grids, and on power grid flexibility.
Two aspects play a dominant role in determining curtailment rates: the coincidence of renewable resources with power demand and the flexibility available in the power grid. As shown in Fig. 1 solar resources correlate with electricity demand more consistently than wind. This correlation is especially prevalent in regions like the southwest United States that experience high solar insolation and large afternoon power loads due to air conditioning. As renewables comprise a larger fraction of power supply, curtailment rates and power-grid conditions should be quantified and analyzed.

Grid flexibility is the second determinant for rates of curtailment. Today, in Texas, wind curtailment is due to transmission constraints. Increased transmission and distribution are presently reducing curtailment rates in Texas.

The energetic performance of battery technologies can and should be improved. ESOL\text{e} (eqn (4)) depends linearly on cycle life, efficiency, depth-of-discharge and embodied energy. Given the realistic values for these variables, an increase in cycle life has the greatest potential to increase ESOL\text{e}. Reducing the embodied energy, ε\text{e}, and improving efficiency and depth-of-discharge will also increase ESOL\text{e}. Fig. 4 employs eqn (10) and shows the number of cycles electrochemical storage technologies must achieve to outperform curtailment (y-axis) when paired with wind generation (EROI = 86) at curtailment rates or storage fractions φ (x-axis).

In calculating Fig. 6 we assume the following values for the other battery attributes that define its ESOL\text{e} ratio (eqn (4) and (10)): efficiency, η = 90%, depth of discharge, D = 80% and three embodied electrical energy-per-unit storage capacity values, ε\text{e} = 50, 100, 150 kWh_e/kWh_e. Today’s battery technologies have an ε\text{e} between 96 and 208 (Table 1). At today’s rates of curtailment (indicated by red arrows below the x-axis), batteries storing wind resources need to achieve a minimum cycle life of 10 000–18 000 depending on φ and ε\text{e}. This requires improvement in cycle life performance of existing technologies by a factor of 2–20 (Table 1). Recent advancements show much promise in improving cycle life, and several proposals for high-life grid batteries have been funded by the U.S. Department of Energy.

The topic of grid energy storage currently holds the interest of policymakers and economists. It is important that the net-energy framework presented here is used appropriately and that our results do not lead to simplistic or wrong conclusions. The value of available energy depends on time, location and need. The economic value of storing energy depends on many factors including extant policies, market forces, and power grid generation availability and power demand conditions. The net-energy framework presented here is intended to aid long-term strategy and planning about the future of our energy systems. The utility lies in informing and building policy around R&D targets, system planning, and economic incentives for energy storage systems. A conclusion that could be drawn from this work is, if society aims to increase output of (say) wind energy with the least energetic investment, it is better in many cases to just build another wind turbine, or possibly transmission lines, than to build a battery to store power that arrives at off-peak times. Conversely, the framework cannot adequately draw conclusions regarding the economic costs and benefits of storage in a given context (time, place, technology).

In closing, there are many reasons why storage provides a useful tool for increasing grid flexibility. We have focused on only one measure of the value of storage. It is equally important to consider other benefits provided by storage, including improved power quality and access to electricity in times of generation shortages, particularly in regions that lack access to an electricity grid. The value of these services needs to be weighed in comparison to other considerations, such as the net energetics we focus on here. It is also worth asking the question: are there other uses for electricity generated by wind or solar that would otherwise be stored or curtailed? For example, excess electricity could be used in applications where the need for on-demand power is low and are not strongly disadvantaged by intermittency, for example, desalinating or purifying water or driving irrigation pumps. These conditions could result in high EROI\text{grid} values with benefits to society that lie beyond the power-grid sector. Further research in net-energy analysis and other perspectives, including economics and environmental stewardship, should explore additional and alternative uses for energy slated for curtailment.

The energetic costs of other grid-flexibility technologies and their reduction of resource EROI should be quantified. The framework presented here can be readily tailored to technologies, including variable generation, increased transmission, and demand-side management including smart grid technology. A comparison of their energetic cost to storage and curtailment could lead to identifying energetically favorable
combinations of grid flexibility technologies sensitive to regional power grid policy, operations and natural resources.

References

On the importance of reducing the energetic and material demands of electrical energy storage†

Charles J. Barnhart* and Sally M. Benson

Two prominent low-carbon energy resources, wind and sunlight, depend on weather. As the percentage of electricity supply from these sources increases, grid operators will need to employ strategies and technologies, including energy storage, to balance supply with demand. We quantify energy and material resource requirements for currently available energy storage technologies: lithium ion (Li-ion), sodium sulfur (NaS) and lead-acid (PbA) batteries; vanadium redox (VRB) and zinc-bromine (ZnBr) flow batteries; and geologic pumped hydroelectric storage (PHS) and compressed air energy storage (CAES). By introducing new concepts, including energy stored on invested (ESOI), we map research avenues that could expedite the development and deployment of grid-scale energy storage. ESOI incorporates several storage attributes instead of isolated properties, like efficiency or energy density. Calculations indicate that electrochemical storage technologies will impinge on global energy supplies for scale up — PHS and CAES are less energy intensive by 100 fold. Using ESOI we show that an increase in electrochemical storage cycle life by tenfold would greatly relax energetic constraints for grid-storage and improve cost competitiveness. We find that annual material resource production places tight limits on Li-ion, VRB and PHS development and loose limits on NaS and CAES. This analysis indicates that energy storage could provide some grid flexibility but its build up will require decades. Reducing financial cost is not sufficient for creating a scalable energy storage infrastructure. Most importantly, for grid integrated storage, cycle life must be improved to improve the scalability of battery technologies. As a result of the constraints on energy storage described here, increasing grid flexibility as the penetration of renewable power generation increases will require employing several additional techniques including demand-side management, flexible generation from base-load facilities and natural gas firming.

1 Introduction

Stable operation of the electric grid requires that the power supply instantaneously matches the power demand. Grid operators continually balance the energy demands of consumers by dispatching available generation. This complicated task will become even more demanding in the future. Driven by the need to reduce the emission of CO2 and increase energy security, policy makers have implemented and continue to implement measures requiring greater power generation to shift to low-carbon energy resources. Wind and solar power show great potential as low carbon sources of electricity, but they depend on the weather. Grid operators cannot employ these resources at their discretion.

As the percentage of power generation by variable sources grows, flexibility in power grid operation will become increasingly necessary. Without increased flexibility variable resources will be
under utilized and suffer from lower capacity factors — the financially critical ratio of actual energy provided to potential based on name plate capacity. Reduced capacity factors drive up the levelized cost of electricity. Curtailment of variable resources increases as their percentage of the grid’s power supply climbs from 20% to 30%. Beyond 30%, sharp reductions in capacity factors occur without increases in system flexibility.⁷

Future grid operators will achieve flexibility by employing techniques that modulate the balance of supply and demand. Proposed techniques include: real-time adjustments of customer electricity use through demand side management; installing generation overcapacity and transmission resources; or decoupling the instantaneous match of supply and demand with energy storage. Large-scale storage maximizes generation utilization without affecting when and how consumers use electrical power.

Storage is an attractive load-balancing technology for several reasons. It increases grid reliability and decreases carbon emissions by reducing transmission load and allowing spinning power plants to operate at optimum efficiencies.⁴ Storage could provide grid flexibility in locations that have ambitious climate-change policies and relatively low-carbon electricity sources including natural gas combined cycle, hydroelectric and nuclear.⁸ Finally, storage provides ancillary grid services including regulation, volt-amper reactive (VAR) power and voltage support.⁹

The benefits of grid-scale energy storage are clear. The question then is cost. How much energy must society consume to build and maintain grid-scale storage? Will material availability limit deployment? What will be the financial cost? Today, financial cost obstructs storage adoption, yet valuable insights concerning application and optimal scheduling continue to make inroads.¹⁰ In this paper we focus on physical costs: energy and materials. Our analysis is presented as follows. First we identify reasonable storage capacities appropriate for future grids with high percentages of renewable power generation. Secondly, we calculate the embodied energy required to maintain operational storage worldwide. Here, we present a novel metric for quantitatively assessing the energetic performance of storage technologies: energy stored on energy invested (ESOI). Thirdly, we apply the methods of Wadia et al.¹⁴ and calculate material dependencies for grid-scale energy storage. Finally, we discuss implications of these energetic and material constraints on storage deployment and recommend research and development directions that could relax these constraints.

This study builds on several foregoing studies that consider the material constraints of battery technologies. The electrification of vehicles has led to careful consideration of the materials needed to produce an adequate supply of vehicle batteries.¹²-¹⁴ Here we extend their material analysis to grid-scale storage by adding additional technologies. Our principle contribution is the quantification and discussion of the energetic costs of grid-scale energy storage in the context of providing grid flexibility for variable resources.

1.1 Electrical energy storage at global scale
Energy storage devices establish and maintain reversible chemical, pressure or gravitational potential differences between the storage medium and local environmental equilibrium. The design of an energy storage device is motivated by its application. Engineers place emphasis on different attributes — cost, efficiency, weight, capacity, etc. For grid-scale applications energy density is less important than cost, safety, efficiency and longevity.

The total energy capacity of storage needed to provide flexibility in the future is an active area of future energy system scenario research and ranges from no storage required to up to three days.¹³,¹⁶ We draw our estimates from several authoritative studies that explore future generation mix scenarios that include up to 50–80% renewable resources¹¹,¹³,¹⁵,¹⁷,¹⁸ (see ESI for details†). In the following analyses we use a narrower global storage capacity of 4 to 12 hours of world average power demand as a point of reference. This can be described as any equivalent time and power combination. For example, this is equivalent to the amount of energy needed to provide 1/2 of world electricity needs for 8 to 24 hours etc. It corresponds to an energy capacity of 8.4 to 25.3 TW h assuming present day average global power demand: 2.1 TW.¹⁹ For comparison, present day fossil fuel energy stores are over 15 times greater.‡ We use this range to ask, ‘how much material and energy will be required to build storage for this range of estimates?’ Will these requirements preclude or present challenges for storage technologies? Are there attributes of storage technologies that R&D efforts should focus on to reduce energetic and material requirements?

For this analysis, we only included current representative electrical energy storage technologies with a developmental stage of pilot, commercial or mature, that show promise of economic viability within a ten-year time frame.² We selected three batteries, two flow batteries, and two geological storage technologies for analysis: lithium-ion (Li-ion), sodium sulfur (NaS), and lead-acid (PbA); vanadium redox (VRB) and zinc-bromine (ZnBr); and compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). Several books and review papers describe these technologies at length.²²-²⁸

2 Calculations and results
2.1 Energetic requirements
Building storage devices requires energy for resource acquisition, transportation, fabrication, delivery, operation, maintenance and disposal. This requisite energy is its embodied energy. In this section we analyze the energy costs for storage technologies from three perspectives. The first compares initial energy costs of storage technologies. The second compares the energy costs for storage technologies over a 30 year period. The

† Strategic Petroleum Reserve: Large fossil fuel energy stores include the U.S. strategic petroleum reserve (SPR) and the North American underground natural gas storage network. The SPR stores 695.9 million bbl of oil (390 TW h) as of April 20, 2012 for emergency use.²² Underground natural gas storage is used to meet seasonal demand variations in natural gas use. Storage capacity of U.S. working gas (the total stored gas minus the cushion gas required to maintain pressure) has varied between 1600 and 3800 billion cf (426 TW h) between 2006 and 2011.²³ To convert these fossil fuel stores of energy to W h, we assumed that a bbl of oil and a cf of gas contains 5.78 × 10⁹ and 1055 BTU of energy respectively. We assume a conservative conversion efficiency from thermal energy (BTU) to electrical energy (kW h) of 33%.
third presents a new metric, Energy Stored on Invested (ESOI), which has advantages over single parameter metrics, such as cost, efficiency or cycle-life.

We compare the energy costs of storage technologies by considering their cradle-to-gate embodied energy requirements. In a cradle-to-gate analysis, a specific Life Cycle Assessment (LCA) valuation, a technology’s use phase and disposal phase are omitted. We obtained these values for storage technologies from published LCA studies.\(^13,29,30\) A recent review of battery LCA by Argonne National Laboratory recognizes that battery LCA data often lack detailed energy and material flows in the best of cases.\(^13\) More commonly data is non-existent or decades out-of-date. We can, using these data, consider the implications of energy costs, obtain comparisons between technologies, and identify technology attributes that, if targeted by research, will lead to reductions in energy use in storage deployment. We converted values from study specific units to an embodied energy storage ratio, \(\varepsilon_{\text{gate}}\) — a dimensionless number that indicates the amount of embodied primary energy required for one electrical energy unit of storage capacity.

We obtained LCA data for technologies from three sources.\(^13,29,30\) Additional LCA data for materials were obtained from various reports and software databases.\(^31–36\) We truncate values to cradle-to-gate, for storage technologies. (B) Levelized embodied energy required to build out grid-scale energy storage. Colored lines indicate the levelized embodied energy costs for storage technologies for a 30 years period as a function of capacity. We can, using these data, consider the implications of energy costs, obtain comparisons between technologies, and identify technology attributes that, if targeted by research, will lead to reductions in energy use in storage deployment. We converted values from study specific units to an embodied energy storage ratio, \(\varepsilon_{\text{gate}}\) — a dimensionless number that indicates the amount of embodied primary energy required for one electrical energy unit of storage capacity.

We obtained LCA data for technologies from three sources.\(^13,29,30\) Additional LCA data for materials were obtained from various reports and software databases.\(^31–36\) We truncate values to cradle-to-gate, for storage technologies. (B) Levelized embodied energy required to build out grid-scale energy storage. Colored lines indicate the levelized embodied energy costs for storage technologies for a 30 years period as a function of capacity.

2.2 Levelized embodied energy

Selecting a storage technology based on static, up-front embodied energy costs alone is insufficient. Over time, cycle life (the number of times a technology can be charged and discharged) and efficiency greatly affect cumulative embodied energy requirements. Prior analysis led to two important findings: (a) technologies like PbA, whose energy requirements are dominated by production and transportation, are sensitive to cycle life and (b) technologies like Li-ion, NaS, VRB, ZnBr, PHS, CAES, whose energy requirements are dominated by operation, are sensitive to round-trip efficiency.\(^37\) The energy cost will depend on the cycle life \(i\) and round-trip efficiency \(\eta\) of storage technologies. The depth-of-discharge \(D\) modulates both cycle life and installation energy capacity size. A battery with a shallow \(D\) will require a larger installed capacity to provide a specified amount of energy storage. Table 1 shows attributes used for our analysis.

A simple AC–AC round-trip \(\eta\) cannot be computed for CAES because it uses additional energy from natural gas used to heat the air as it leaves the storage cavity. By subtracting natural gas energy

Table 1 Storage technology attributes affecting life-cycle energy requirements

<table>
<thead>
<tr>
<th>(\eta^a)</th>
<th>(\lambda^b) at depth-of-discharge (DOD)</th>
<th>(\varepsilon_{\text{gate}}^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>100%</td>
<td>80%</td>
</tr>
<tr>
<td>Li-ion</td>
<td>90</td>
<td>4000</td>
</tr>
<tr>
<td>NaS</td>
<td>75</td>
<td>2400</td>
</tr>
<tr>
<td>PbA</td>
<td>90</td>
<td>550</td>
</tr>
<tr>
<td>VRB</td>
<td>75</td>
<td>2900</td>
</tr>
<tr>
<td>ZnBr</td>
<td>60</td>
<td>2000</td>
</tr>
<tr>
<td>CAES</td>
<td>70</td>
<td>>25 000 DOD indep.</td>
</tr>
<tr>
<td>PHS</td>
<td>85</td>
<td>>25 000 DOD indep.</td>
</tr>
</tbody>
</table>

\(a\) Sources: ref. 23. \(b\) Sources: ref. 29. \(c\) Primary energy per unit electrical energy.

Fig. 1 Energy storage technologies require varying amounts of energy for manufacturing and for their production. (A) Cradle-to-gate primary embodied energy per unit of electrical energy storage capacity, \(\varepsilon_{\text{gate}}\), for storage technologies. (B) Levelized embodied energy required to build out grid-scale energy storage. Colored lines indicate the levelized embodied energy costs for storage technologies for a 30 years period as a function of capacity.
inputs and considering the differences in energy quality between natural gas and electricity, analysts report net electrical storage efficiencies between 66 and 71%,36,38 NaS and flow battery efficiencies are lower than other electrochemical technologies due to parasitic energy losses associated with thermal management and pumps.23

For nearly all electrochemical storage technologies, cycle life depends on the operating temperature and the depth of discharge. This is due to the kinetic behavior of chemical reactions. Rydh and Sanden 2005 (ref. 29) provides a table that shows cycle-life ranges for three different depths of discharge: 33%, 80% and 100%. Linden, 2010 (ref. 23) describes in detail the relationship between kinetics and cycle life for electrochemical storage technologies. Here, we assume the optimum operating temperature and select the depth of discharge and coupled cycle life that minimizes the leveled energy consumption (italic font in Table 1).

We calculate a levelized embodied energy for storage technologies as follows:

\[
LE_{\text{embodied}} = \frac{E_{\text{gate}}}{D_{\eta}} \left(\frac{t_{\text{day}} T}{\lambda} \right) \quad (1)
\]

where \(t_{\text{day}}\) is the number of days operating per year (365), and \(T\) is the levelization period in years. We assume EES technologies are replaced entirely and that recycling is not significant due to rapid deployment and scale up. Recycling would likely reduce the \(E_{\text{gate}}\) preferentially for technologies with shorter cycle life, but this effect was not quantified here. PbA's low \(E_{\text{gate}}\) might be attributed to extensive present day recycling of automotive batteries.39 The normalization factor incorporating cycle life is rounded up to the next integer. Similar to levelized cost of electricity (LCOE) studies, we select a levelization period of 30 years.40

The solid lines in Fig. 1B, correspond to storage technologies and show the \(LE_{\text{embodied}}\) (x-axis) required to build and maintain storage capacity (y-axis). The horizontal red lines indicate the world energy storage capacity reference of 4 to 12 hours of average power demand. Once a line has entered into the shaded regions the storage capacity as indicated by the y-axis will require 1% and 3% of today's global primary energy production to manufacture and maintain storage devices assuming a 30 years levelization period. Electrochemical storage technologies require 10 to 100 times more embodied energy for a given energy capacity than geological storage technologies.

2.3 Energy stored on invested

The levelized embodied energy calculation is useful for estimating the energy required to build grid-scale storage, but it suffers from biases introduced by assuming a levelization period and operational hours per year or a capacity factor. Motivated by energy returned on invested (EROI) analysis,41 we present a new formula that avoids these biases: energy stored on invested (ESOI). ESOI is the ratio of electrical energy stored over the lifetime of a storage device to the amount of primary embodied energy required to build the device:

\[
ESOI = \frac{\text{Energy stored}}{\text{Embodied energy}} = \frac{(\text{capacity}) \lambda \eta D}{(\text{capacity}) E_{\text{gate}}} = \frac{\lambda \eta D}{E_{\text{gate}}} \quad (2)
\]

where \(D\), the depth-of-discharge, modulates the energy stored. Fig. 2 shows the ESOI for load-balancing storage technologies. It contrasts with the static cradle-to-gate energy costs shown in Fig. 1A. Over their entire life, electrochemical storage technologies only store 2–10 times the amount of energy that was required to build them.

2.4 Material resource requirements

In addition to energy costs, storage technologies require material resources. Several prior studies have estimated the material requirements for energy storage.12–14 The principal contribution of this study is quantifying the energetic requirements of energy storage. Materials are a second physical cost and we conducted our own analysis in order to discuss the implications these material requirements have on the time required to scale energy storage for load-balancing renewable resources in future energy systems.

Consider the elemental constituents of storage technologies. Fig. 3A–C show how global annual production, price and specific embodied energy vary with the mass fraction of elements in the Earth's lithosphere.$§$ The top plot shows the total mass of elements produced annually worldwide in metric
tonnes (1000 kg). The specific value is the 5 years annual average from 2006 to 2011. The colors of the plotted data correspond with the storage technology that each element supplies. The middle plot denotes price of elements in U.S. dollars per kg. The bottom plot shows the amount of embodied energy per kg of element acquisition is required using today's extraction and purification techniques. The amount of energy required to extract and process a kg of material depends on its chemical form in the lithosphere. We obtained LCA data for elements from LCA studies, consultant firms and software packages: Li, Co, Na, S, Pb, V, Zn.

The relative abundance of technology specific elements in the earth's crust does not necessarily indicate their ability to be mined and produced, but it provides an initial assessment of material limits faced by certain technologies. For example, sulfur, the limiting electrochemical agent for NaS, is over 40 times more abundant than lead, the limiting agent for PbA. In general, annual production increases with lithospheric abundance and price decreases. Considering annual production alone, NaS manufacturing has advantages over VRB manufacturing due to an in-place production infrastructure that produces over 1000 times more requisite material.

2.5 Energy storage potential of resources

How much energy can a critical material or resource store? The energy storage potential (ESP) estimates the energy capacity of a storage technology's critical resources. In this case, the ESP is limited by one of the two elements or molecules of the battery cell's electrochemical couple:

\[
\text{ESP} = \frac{\rho M}{m_f} \text{, where } \rho \text{ is the theoretical energy density, } M \text{ is mass of limiting material available, and } m_f \text{ is the mass fraction within the electrochemically active materials with corresponding } \rho.
\]

Table 2 lists parameters used in ESP calculations. For ESP calculations, several assumptions and caveats were made:

- We only considered materials that constitute the storage medium. There may be other resources, rare-earth elements for example, that play a key role in a storage technologies operation. The U.S. Department of Energy has identified elements critical for energy storage in “Critical Materials Strategy”. This report indicates that some battery technologies, NiMH for example, use a cathode material designated as AB₅, where A is typically rare earth mischmetal containing lanthanum, cerium, neodymium and praseodymium.
- The reserve base is an estimate based on measured or indicated amounts of minerals including minerals that are marginally economical and sub-economical to extract as defined by the USGS MCS report. If a material is in low demand then reserve bases will likely be underestimates of resource availability.

Table 2 Electrochemical storage technology properties

<table>
<thead>
<tr>
<th>Technology</th>
<th>Reactants</th>
<th>m_f</th>
<th>ρ_theoretical (ρ_practical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-ion (cylindrical spiral-bound)</td>
<td>Li,C₆</td>
<td>0.04</td>
<td>448 W h kg⁻¹</td>
</tr>
<tr>
<td></td>
<td>Li₁₋ₓCoₓ</td>
<td>Co 0.35</td>
<td>(200)</td>
</tr>
<tr>
<td></td>
<td>Na + xS</td>
<td>Na 0.42</td>
<td>792</td>
</tr>
<tr>
<td></td>
<td>(x = 5 - 3)</td>
<td>S 0.58</td>
<td>(170)</td>
</tr>
<tr>
<td>NaS (NGK-Tepec)</td>
<td>Li₁₋ₓCoₓ</td>
<td>Co 0.35</td>
<td>(200)</td>
</tr>
<tr>
<td></td>
<td>Pₐ + PbO₂</td>
<td>Pb 0.93</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>H₂SO₄</td>
<td></td>
<td>(35)</td>
</tr>
<tr>
<td>VRB</td>
<td>V[SO₄]₀⁻</td>
<td>V 0.31</td>
<td>167*</td>
</tr>
<tr>
<td></td>
<td>VO₃[HSO₄]</td>
<td>(30*)</td>
<td></td>
</tr>
<tr>
<td>ZnBr</td>
<td>Zn + Br₂</td>
<td>Zn 0.29</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>Br 0.71</td>
<td></td>
<td>(70)</td>
</tr>
</tbody>
</table>

* Sources: All information from ref. 23 unless otherwise noted.
The theoretical energy density is based on the active anode and cathode materials only. In practice, batteries only realize 25% to 35% of their theoretical energy density because of necessary inactive components.\(^\text{23}\) Necessary components including electrolytes, containers, separators, current collectors and electrodes add mass and volume to the battery which reduces energy density.

- CAES and PHS require cement and steel for construction; they are not materially limited. The embodied energy associated with acquiring steel will limit its acquisition well before limits in the physical material availability of iron and carbon in the lithosphere. However, they do require unique geological formations. A thorough estimate for national or worldwide PHS potential has yet to be made. The U.S. Energy Information Agency (EIA) and the U.S. Department of the Interior estimate remaining U.S. pumped hydro storage capacity at ten times present day levels.\(^\text{45,46}\) These studies are conservative in that they do not consider coastal PHS. Considering these studies, we conservatively assume that the world has at least ten times present day pumped hydro capacity: 102 GW h \(\times 10 = 1\) TW h.

- For CAES we estimate the ESP by considering locations identified for carbon dioxide sequestration and the energy density of compressed air: \(\text{ESP} = \rho_{\text{CAES}} \times V\), where \(V\) is the reservoir volume. The volumetric energy density, \(\rho_{\text{CAES}}\), of compressed air of atmospheric composition increases almost linearly with reservoir pressure.\(^\text{38}\) Existing CAES plants, for example Huntorf, have variable reservoir pressures of \(\sim 60\) bars and energy densities between 3 and 5 kW h m\(^{-3}\). We assume hydrostatic reservoirs in underground aquifers at depths greater than 500 m and an energy density \(\rho_{\text{CAES}} = 5\) kW h m\(^{-3}\). The global volume estimates for CO\(_2\) sequestration for depleted oil and gas reservoirs and saline aquifers are \(2 \times 10^{12}\) m\(^3\) and \(7.9 \times 10^{12}\) m\(^3\) respectively.\(^\text{47}\)

Fig. 4 shows the ESP for grid-scale storage technologies. The shaded section on the left shows the ESP for EES limiting materials based on their annual production (colored bars). Using Pb as an example, if the entire annual production of lead was used to create PbA batteries, the total energy storage capacity would be 1.1 TW h or about 2% of the average world daily electricity demand. Sulfur, if used entirely for NaS manufacturing, would yield nearly 1000 times greater energy storage capacity. The main section of Fig. 4 shows ESP as a function of time (x-axis) assuming linear growth. This provides an estimate for the time required for a storage technology to reach an energy storage capacity goal of 4 to 12 hours (red horizontal lines). The shaded region on the right shows ESP as a function of economically viable reserve estimates or as a function of conducive geologic formations. Traditional fossil fuel storage reserves are shown as reference (see footnote\(^\text{‡}\)).

Fig. 5 compares the embodied energy required to obtain a kg of various elements to the ESP of a kg of those elements. Assuming that the energy required to manufacture battery technologies are comparable, elements with a higher ESP/embodied ratio, like Na and Br, are less energy intensive.

3 Discussion

Researchers have identified capital and levelized cost points that permit profitable avenues for storage.\(^\text{9,49,50}\) In response, industry and academia currently focus on developing inexpensive storage technologies. However, by asking the simple question, “Will energy and material costs limit the ability of storage to provide load-balancing for the electrical grid?”, we identify other critical criteria that must be addressed to achieve sufficient and rapid scale up of the storage industry. Storage adds infrastructure and necessarily increases material and energy demands. Society’s ability to accommodate these demands will dictate the maximum quantity and rate of storage deployment. Other energetic, material and land use constraints may limit renewable energy production technologies, precluding the need for massive grid-scale energy storage, and such studies are needed.

3.1 On energetic costs

Comparing \(f_{\text{gate}}\) for storage technologies in Fig. 1A leads to two general conclusions. First, technologies that use readily available, inexpensive and abundant materials like air or water
leads to reductions in embodied energy associated with manufacturing than newer technologies like VRB because they benefit from progressions and advancements in their production and manufacturing ‘learning-by-doing’ that also leads to reductions in financial costs.

Consider the levelized embodied energy costs over a 30 years time frame shown in Fig. 1B. PbA, the most demanding technology, requires over 1.5 years of worldwide primary energy demand to create 12 h of storage. Even if this demand was to be spread out over the next 30 years, the world would need to produce 5% more energy just to build PbA storage. This is doable, but would require sustained and cooperative efforts from government and industry. Less energy would be available for other uses. If we want to limit the amount of energy needed to build storage systems then we need to start building it now and continue for a long time. Alternatively, if we can rely on CAES and PHS, then energy requirements will not be a limitation and it could be built more quickly. Developing electrochemical technologies with comparable levelized embodied energy values to CAES and PHS would be immensely beneficial.

The most effective way a storage technology can become less energy intensive over time is to increase its cycle life. This suggests that the current R&D focus on reducing costs is not necessarily sufficient to create a scalable energy storage infrastructure. Instead, the focus needs to be on identifying energy storage options with much lower levelized energy costs – comparable to PHS and CAES. Granted, the accuracy of the LCA data could be greatly improved. Case studies for cycle life data, efficiency and depth-of-discharge should be sought to augment the highly generalized data presented here. The general implications would not change however. Unless cycle life is increased by a factor of 3 to 10 and embodied energy costs are reduced, the amount of storage required to provide load-balancing for significant fractions of renewable generation will tax societies’ energy systems.

The ESOI ratio compares the cumulative amount of energy stored to the embodied energy cost. Whereas CAES and PHS store >100 times more energy over its life than the energy required to build them, PbA’s low cycle life (~300) leads to a poor ESOI ratio of 2. All of the electrochemical storage options have low ESOI ratios. CAES and PHS likely have higher ESOI values than those calculated here given our conservative cycle life estimate of 25,000. Ranked from least to most limited by energetic requirements, the technologies considered here are as follows: CAES, PHS, Li-ion, NaS, VRB, PbA, ZnBr.

A singular focus on improving storage efficiency misses the greatest opportunity for reducing the amount of energy required by storage technologies. We should not only consider the energy dissipated with every cycle due to inefficiencies, but the energy required, up-front, for manufacturing the technology. The total energy per unit capacity lost due to inefficiencies over the lifetime of a technology depends on the total number of cycles, \(N \), and the efficiency, \(\eta \): \(\epsilon = (1 - \eta) \lambda \). For all electrochemical storage technologies, the up-front energy cost, \(\epsilon_{\text{gate}}/D \), dominates the energy budget (cf. Table 1). As a superior metric, ESOI includes all of these terms in a meaningful and intuitive way that quantitatively assesses the energy performance of storage technologies.

3.2 On material resource costs

Developing storage technologies that use Earth-abundant materials with high annual production rates like Na, S and Zn is not only practical, but the production infrastructure is already in place. All electrochemical storage technologies considered here besides NaS will require a significant portion of their active resources’ annual production. For example, one can estimate from Fig. 4 that about 3 days of Na production yields the ESP equivalent of 1 year of Pb production and 10 years of Co production. If battery manufacturing rates were to increase rapidly over the next half century, demand for these materials would increase greatly. Likely, this would encourage mining industry R&D and resource exploration efforts, increasing the amount of economically viable reserves. The challenge will be in the extraction of storage critical resources. For an individual technology to reach 12 hours of capacity, annual production by mass will need to double for lead, triple for lithium, and increase by a factor of 10 or more for cobalt and vanadium. This will drive up the price of these commodities.

Geologic storage, in particular CAES, faces negligible material limits. The challenge for geologic energy storage is finding suitable sites that accommodate not only technical requirements, but environmental considerations as well. Ranked from least to most limited by material availability, the technologies considered here are as follows: CAES, NaS, ZnBr, PbA, PHS, Li-ion, VRB.

3.3 Proposed technology targets

Although our results identify major challenges for EES at grid-scale, they, more importantly, indicate research directions that will loosen storage material and energy constraints. The ESOI of storage technologies depends linearly on their efficiency, depth-of-discharge, embodied energy and cycle-life (eqn (2)). Consider the current range and theoretical limits on these parameters. Fig. 6 shows how ESOI varies with efficiency, cycle life and embodied energy. With this framework efficiency and depth-of-discharge can be increased at most by about 25–33% or a factor of 1/4 to 1/3. What about \(\epsilon_{\text{gate}} \)? Using current and developing new low-energy extraction techniques and reducing energy costs in manufacturing through efficiencies gained by learning, we anticipate that embodied energy costs could be reduced at most by a factor of 2 to 3.

The third parameter in eqn (2), cycle life, has a range for current technologies from <1000 to >25,000, a factor of 25. Clearly then, the greatest potential for increasing the ESOI for storage technologies lies with a R&D focus on extending cycle life. On-going research may push cycle life for some technologies including lead-acid beyond 40,000. The lower plot of Fig. 6 implies that at high cycle life values >15,000, reductions in \(\epsilon_{\text{gate}} \) provide the greatest increase in ESOI. PHS has very high cycle life and low \(\epsilon_{\text{gate}} \). Limited by geologic setting, further PHS development would benefit from research into plant component resistance to harsh salt water environments. This would permit robust, long-lasting PHS at coastal locations.
Much energy storage research currently focuses on high specific energy density (W h kg\(^{-1}\)). This quality is very important for electric vehicles and portable electronics. Cycle life is less of a concern in these applications because batteries in portable electronics and vehicles lack market drivers to outlive these goods. For grid scale applications, energy density is not limiting (see ESI, spatial footprint†). Based on ESOI calculations, EES research should focus on making robust and long-lived storage devices, extending cycle life. The less frequently a storage technology needs to be decommissioned, recycled and built anew, the less energy and material resources will be required to maintain capacity.

3.4 Concluding remarks

Although many potential short- and long-term energy resources are available to society, the greatest endowments of renewable low-carbon electricity are wind and solar. However, they require load-balancing techniques to mitigate their intermittent and variable nature. Electrical energy storage will allow the use of electricity in renewable-sourced grids with the same demand-centric perspective that is provided today from fossil fuel-sourced grids. The energy capacity required is likely between 4 and 12 hours of average power demand. To build an energy storage infrastructure of this size will require materials and energy at amounts comparable to annual global production values. Unless the cycle life of electrochemical storage technologies is improved, their energy costs will prohibit their deployment. CAES and NaS show the greatest potential for grid storage at global scale. Unless the cycle life of electrochemical storage technologies is improved, their energy costs will prohibit their deployment as a load-balancing solution at global scale.

EES will not play a singular role in providing flexibility for power grids supplied by renewable resources. Given the high energy costs and necessary increases in material production introduced by storage, grid-operators should employ other techniques in concert. Integrating storage technologies, demand-side management including smart-grid applications, and most likely natural gas firming generation resources should prove to be a challenging yet rewarding goal that will ultimately greatly reduce carbon emissions and increase grid reliability and security.

Acknowledgements

This work was conducted by Stanford University’s Global Climate and Energy Project (GCEP). We greatly appreciate the support GCEP’s sponsors provided (http://gcep.stanford.edu).

References

Intergovernmental Panel on Climate Change, Cambridge, U.K., 2005, ch. 5.

