System Dynamics and the Changing Resource Mix

Rich Hydzik, Transmission Operations, Avista
Small Hydro and Technical Workshop
August 21, 2019
Essential Reliability Services

• Simple grid description
 • Spin a magnet in a coil of wire and connect it to a load
 • Spins 60 times per second, or 3600 revolutions per minute
 • Big spinning machine at 3600 rpm – not too fast, not too slow, just right

• Inertia
 • Rotating mass tends to stay rotating
 • Balancing a bicycle moving instead of stopped
 • Larger the mass, the more inertia (ratio of kinetic energy to rating)
 • Coal plants are very large
 • Hydro, steam, and combustion turbines have similar per unit inertia constants
 • 2-7 MW*sec/MVA
 • Wind and solar facilities have very little or no inertia – no spinning mass

• More inertia makes system resistant to fast changes
Essential Reliability Services

- Concern about changing generation fleet
 - Large coal fired power plants are being retired
 - Natural gas, renewables, and variable generation are increasing
 - Large synchronous generators inherently provide Essential Reliability Services

- Essential Reliability Services – ERSTF formed September 2014
 - Generation Ramping – ability to adjust to meet changing loads
 - Frequency Control
 - Inertia – object in motion tends to stay in motion
 - Primary frequency control – automatic response compensating for the loss of a large generator - fast
 - Secondary frequency control – Automatic generation control (AGC) to 60 Hz - slow
 - Voltage control – maintain within limits

- Reliability Effects
 - How does reliability change with newer resources?
Generation Ramping

- Variable resources are variable
- Generating resources must accommodate load and variable generation
- Load is very predictable hour to hour – 3% or so 24 hours out
- Solar generation has a very predictable pattern
 - Fast ramp up in morning
 - Large ramp down in evening
- Wind is more variable
 - Continuous changes
Generation Ramping

- Wind Generation – December 1, 2015
Generation Ramping - Variability

- Wind Generation – Avista 2014 Summer Peak
Generation Ramping “Duck Curve”

Actual net-load lower than originally estimated due to increased amount of renewable resources including DER

Typical Spring Day

- Net Load 11,663 MW on May 15, 2016
- Actual 3-hour ramp 10,892 MW on February 1, 2016

ramp need ~13,000 MW in three hours

over generation risk
Generation Ramping “Duck Curve”

- 9/25/2016 CAISO Renewable Generation
- Evening solar ramp out must be made up by other generation
- 10,000 MW over three hours
- CAISO has 5,000 MW of distribution connected (DER) solar that is not counted in this
- BA Load = Generation – Interchange
 - DER is not counted in generation
 - DER decreases BA load
Primary Frequency Control

- Responds in seconds to change in frequency (speed control)
 - Steam turbines respond quickest
 - Gas turbines are almost as fast
 - Hydro is slower
- Higher inertia slows frequency decline
 - More kinetic energy in the system
 - Allows more time for governor response
 - Frequency nadir is not as low
- Governor responding according to droop characteristic (3-5%)
- Automatic response
- Each generator increases output a little – adds up fast
- If not enough generators respond
 - Torque out exceeds torque in
 - System slows down and stops
Primary Frequency Control

01/21/2016 01:08:56 Colstrip 3 and 4 – 1500 MW
Primary Frequency Response

- Inertia – object in motion tends to stay in motion – 3600 rpm
 - 0.036 Hz deadband is 2.16 Hz
- Inertia determines Rate of Change of Frequency (ROCOF)
- More inertia, slower frequency decline
 - More time for governors to respond
- Less inertia, faster frequency decline
 - Less time for governors to respond
- How much is enough?
 - WECC and Eastern Interconnection – don’t know
 - ERCOT – They know and plan and operate to it
- Renewables have little or no inertia
 - Inverters – solar
 - Type 4 Wind Turbines – similar to inverters
- Renewables can have fast frequency response (synthetic inertia)
 - FFR can mitigate effects of low inertia and high ROCOF
Secondary Frequency Control

- **Automatic Generation Control (AGC)**
 - Slow acting – follows Area Control Error (ACE)
 - ACE measures schedule error and frequency error

- **Contingency Reserve**
 - Deployed following loss of a generator within ten minutes

- **Load Following Reserve**
 - Generation brought online to meet load variations within the hour

- **Regulating Reserve**
 - Generation controlled by AGC automatically responding to ACE changes
 - Avista generally carries +/- 25 MW going into each hour
Voltage Control

- Synchronous machines provide the voltage source
 - Adjust voltage (supply or consume vars) in real-time – regulators
 - Automatic voltage regulation maintains voltage stability during contingencies
- Capacitors and inductors store and release energy each cycle
 - Capacitors release energy when inductors store energy and vice versa
 - AC systems take advantage of this
 - Power factor correction
 - Series compensation
- Most inverters are current sources clocking off of system voltage
 - Not an independent voltage source
 - Inverters can supply vars
 - Type 3 and 4 Wind Turbines can supply vars
- Voltage pushes and pulls current (AC)
Voltage Control

- Voltage must be maintained near ratings under all conditions
 - Generally 95% to 105% of nameplate rating
 - Equipment guarantee to operate correctly does not apply when voltage limit is exceeded
- Heavy load
 - Tends to depress voltage
 - Capacitors are used to compensate – produce vars
- Light load
 - Voltage tends to rise
 - Reactors are used to compensate – consume vars
- Contingencies
 - 95% to 105% limit post-contingency
- Synchronous machines are the voltage source
Inverters

• Frequency and voltage ride through
• Momentary Cessation
 – Cease output for a period of time (cycles to seconds)
• Loss of inverter resources during system faults
• Blue Cut Fire – August 2016
• Canyon 2 Fire – October 2017
• Fast Rate of Change of Frequency
• Deep nadir point
Gas Electric Interdependencies

- West Coast states are moving towards de-carbonizing electric generation
Hydro Provides Essential Reliability Services

- ERS
 - Ramping Capability
 - Frequency Control
 - Voltage control
- Synchronous generators
- Inertia
- Active voltage control
- Primary frequency response
- Storage (depending on facility)
- Dispatchable
- Very reliable and dependable
Frequency Excursion – Interconnection
Wide Phenomenon
Reference Links

• Essential Reliability Services Work Group

• Distributed Energy Resources Report

• ERS Concept Paper

• ERS Videos
 ▪ https://vimeopro.com/nerclelearning/erstf-1
Questions?

• Rich Hydzik, Transmission Operations Engineer
• rich.hydzik@avistacorp.com
• (509) 495-4005